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On interpretation of interactions

GEOFFREY R. LOFTUS
University of Washington, Seattle, Washington 98195

The principle focus of this paper is on interpretation of interactions that are obtained when
response probability is used as a dependent variable. It is argued that results obtained with
probability (or any dependent variable) are only interesting insofar ~s they reflect something
about a corresponding theoretical component. It follows that the functional mapping of
response probability (which is measured) onto the state of a theoretical component (which is
inferred) must be somehow specified if conclusions are to be meaningful. Depending on the
nature of such a mapping, various types of results, particularly results involving interactions,

may or may not be interpretable.

The purpose of this paper is to provide a new look
at an old caveat: that certain types of interactions
make sense only if a particular scale is assumed. This
point has been made before in the measurement
literature (e.g., Krantz & Tversky, 1971), in the
developmental psychology literature (e.g., Bogartz,
1976), as well as in design textbooks (e.g., Winer,
1971). It occasionally makes furtive appearances in
the memory literature in the guise of cautions about
“floor” and “ceiling” effects. Unhappily, however,
it is a point that often continues to be ignored.

The present attack on this issue rests on the
assumption that the primary purpose of experimentation
in psychological research is to test theories, models,
hypotheses, and speculations (hereafter collectively
designated “theories”). Given this assumption, three
topics will be discussed. First, I present a representation
of the relationship between theory and data in memory
research. This representation is not particularly
profound, but it provides a convenient framework
within which subsequent arguments will be couched.
Second, I consider a problem in data interpretation
that frequently occurs in experimental reports. This
problem involves the issue of what type of conclusions
may be drawn from the results of an experiment in
which response probability has been used as a dependent
variable. Finally, some modest beginnings of a solution
to this problem will be offered.

THEORY AND EXPERIMENTATION
IN MEMORY RESEARCH

Figure 1 is a representation of some of the relation-
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ships between theory and data in memory research.
The center section of Figure 1 lists some of the major
components of interest in the theory of memory.
This list is not, of course, exhaustive, but is meant
to represent theory at a fairly general level.

To test a theory or some component of a theory,
one does experiments. An experiment consists of
manipulating some independent variable (top panel of
Figure 1) which is assumed to cause variation in the
state of one or more of the components of the memory

INDEPENDENT VARIABLES

Manipulation of independent variables is
assumed to cause variation in one or more
components of a theory of memory.

NS

THEORY OF MEMORY

A. Characterization of input information.

B. Characterization of stored information.

C. Identification of processes that operate
on stored and input information.

D. Identification of how long these
processes take,

E. How the results of A -D map into
responses that a subject is permitted
to make in an experment.

S

DEPENDENT VARIABLES

Assumed to measure variations in one or
more components of a theory

A. Time.

B. Probability.

Figure 1. A general view of the relationship between theory
and experimentation in memory research.
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theory (hereafter, theoretical components). Variation
in the state of a theoretical component is, in turn,
assumed to be reflected by an associated variation in
some dependent variable that is being measured in the
experiment.

Memory research has produced a proliferation both
of theoretical components and of the independent
variables that are assumed to cause variations in the
states of these components. In contrast, however,
memory research is woefully impoverished in terms
of the dependent variables that are assumed to measure
such variations. The vast majority of experiments
designed to investigate memory use but two dependent
variables: time and probability.! Wickelgren (Note 1)
has enumerated reasons for exercising caution when
interpreting data based on reaction time. The arguments
to be sketched in this paper will similarly identify
precautions that should be observed when interpreting
data based on response probability.

Time (e.g., reaction time), when used as a dependent
variable, is generally assumed to be a direct (i.e., linear)
reflection of time as a theoretical component2 (eg.
Donders, 1969; Sternberg, 1969). When response
probability is used as a dependent variable, however,
the situation is somewhat different, in the sense that
one cannot generally assume a linear function mapping
the state of some theoretical component onto response
probability. Rather, this function may be linear, but it
may also be negatively accelerated, ogival, or something
else, depending on the theory and the specific
theoretical component under consideration. Often,
the function is not well specified but is merely assumed
to be monotonic. To the extent that the nature of this
function is not considered, certain types of data may
be overinterpreted.

CONCLUSIONS MADE FROM EXPERIMENTS
USING RESPONSE PROBABILITY

The fact that the function relating some theoretical
component to response probability is (1) often not
well specified and (2) not necessarily linear means that
there are limits on the sorts of conclusions that can be
based on response probability data. A hypothetical
example will serve to illustrate what is meant by this.

Suppose an experiment is done on forgetting in
the Brown-Peterson paradigm.* Two retention intervals
are used: Ssec and 20 sec. Additionally, a second,
two-level, independent variable is factorially combined
with retention interval. This variable could be any one
of a number of things (e.g., stimulus meaningfulness,
number of initial repetitions, type of instructions,
etc.). I will refer to the second variable as A and to the
two levels as A, and A,.

Figure 2 (top panel) shows a possible outcome of
this experiment. (For ease of subsequent discourse,
the four data points have been labeled a, b, ¢, and d)
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Figure 2. A hypothetical outcome in the Brown-Peterson
paradigm. Of four possible models relating “‘quality of
information™ to response probability, two preserve the original
interaction, whereas the other two do not.

Assume that statistical analysis has revealed all simple
main effects and the interaction to be significant. What
sorts of conclusions might be made on the basis of
these results? Based on the significant main effects, a
research report would probably claim something such
as, “Condition A; leads to better overall memory
performance than does Condition A, and overall
memory performance decreases over retention interval.”
The report might then go on to claim, based on the
significant interaction, that “forgetting is faster in
Condition A, than in Condition A,.” It is the third
conclusion that raises problems.

Model-Dependent Statements

All three conclusions imply some model of memory
and of forgetting. At a very general level, the following
assumptions must underlie the conclusions:

(1) When a correct response is made, the subject
must have been basing that response on information
“stored” at some time. This information must be
information “about” the to-be-remembered stimulus.
(What is meant by “stored” and “about” is left vague
at this general level and can only be defined in the
context of some more specific model.)

(2) The greater the “quality” of this information,
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the more often the subject is able to respond correctly.
(Again, the precise meaning of “quality” can only be
defined within the context of a more specific model.)

Within the framework of this very general model,
the three conclusions based on the hypothetical data
now translate into the following:

Conclusion 1. The quality of information is greater
in Condition A, than in Condition A,.

Conclusion 2. The quality of information declines
over retention intervals.

Conclusion 3. The decline of quality is faster in
Condition A, than in Condition A, .

Based on the data and the general model, Conclusions
1 and 2 follow unequivocally. However, Conclusion 3
does not follow unequivocally. Whether Conclusion 3
is true or false depends entirely on how “quality” is
defined and how quality is functionally related to
response probability. In short, Conclusion3 is a
conclusion that can be made only within the context
of a more specific model than the one described above.

Four Definitions of “Quality”™

To illustrate why Conclusion 3 is model dependent,
the bottom panels of Figure 2 depict four different
models of “quality,” where a model is characterized
here simply in terms of the function that maps quality
onto response probability.

Model A depicts a linear function. Here, Conclusion 3
is true in the sense that the independent variables
interact in terms of quality in the same way that they
interact in terms of response probability. More formally
stated, the four data points (probability values) a, b, c,
and d map into the four quality values Q(a), Q(b),
Q(c), and Q(d), respectively. In terms of probability,
the interaction may be represented by the fact that
a —c<b —d. The equivalence of the interaction in
terms of quality is then reflected by the fact that
Q(a) — Q(c) < Q(b) — Q(d). Models B, C, and D depict
negatively accelerated functions relating quality to
response probability. In Model B, the claimed inter-
action still exists in terms of quality, since it is still
the case that Q(a) — Q(c) <Q(b) — Q(d). Therefore,
within the contexts of Models A and B, Conclusion 3
above is still valid: Forgetting is faster in Condition A,
than in Condition A, .

However, the situation changes rather dramatically
when Models C and D are considered. In Model C, the
interaction has been transformed away; that is, in terms
of quality, Q(a) — Q(c)=Q(b) — Q(d). And finally, in
Model D, the interaction in terms of quality is reversed
relative to what it was in terms of response probability;
that is, with Model D, Q(a) — Q(c)> Q(b) — Q(d).

Hence, working within the context of Model C would
yield the conclusion that the rate of forgetting is equal
in Conditions A, and A,. With quality as defined by
Model D, the original conclusion would reverse: It would
be that the rate of forgetting is slower in Condition A,
than in Condition A, .

The point of this example is to illustrate that,
when a negatively accelerated function maps some
theoretical component—in this case, quality—onto
response probability, the sort of interaction depicted
in the top panel of Figure 1 is uninterpretable. That is
to say, one cannot tell whether the interaction will
be the same, will be transformed away, or will reverse
itself in terms of the theoretical component. Which
of these three outcomes will obtain depends entirely
on the exact quantitative form of the mapping function.

CLASSES OF THEORETICAL COMPONENTS

The remainder of this paper will generalize the above
illustration to other kinds of mapping functions and
other sorts of interactions. The strategy will be to
enumerate classes of theoretical components, where
a “class” is defined in terms of the general type of
function that maps the state of the component onto
response probability. Having characterized such classes,
it is then a fairly straightforward exercise to determine
what types of conclusions about a particular class of
components can be made from various sorts of data.
Specifically, five classes of theoretical components will
be defined, corresponding to functions that are
monotonic, ogival, negatively accelerated, inverse, and
linear. For each class, I will (1) give an example of a
member of that class drawn from the memory literature
and (2) specify what types of data based on response
probability, particularly data involving interactions,
are interpretable in terms of the theoretical component
of interest. An interaction (or lack of interaction) in
terms of response probability is defined here to be
interpretable if the ordering of the response probability
data and the form of the mapping function under
consideration unambiguously specify the form of the
interaction that will exist in terms of the theoretical
component.* Formal mathematical proofs will not
be provided, as this paper is a short tutorial exercise.
The reader is invited to convince himself or herself of
the validity of the assertions to be made about the
interpretability of various kinds of interactions by
making up examples similar to those depicted in
Figure 1.

Examples will be given of data patterns that form
interpretable vs. uninterpretable interactions for the
various classes of components. These examples will
be restricted to designs involving only two levels of
each independent variable. This is because 2 by 2 designs
are simple, and sufficient for illustrating the major
arguments to be made. Designs with more than two
levels per independent variable will be discussed briefly
in a later section.

MONOTONIC FUNCTIONS

In the vast majority of theories about memory,
the function relating the state of some theoretical
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Figure 3. Interpretable and uninterpretable interactions
when monotonicity is the only assumption made about the
function mapping a theoretical component into response
probability.

component to response probability is not quantitatively
specified; rather, only the weak assumption is made
(usually implicitly) that the function is monotonic.’
An example of such a situation comes from the “depth-
of-processing” literature (e.g., Craik & Lockhart, 1972).
As illustrated in Figure 3a, this framework assumes
that the greater the depth to which some item is
processed, the higher will be the probability of correctly
responding to that item.

Conclusions Based on Main Effects

For a function p(x) to be monotonic, the following
must be true: Given two states x; and x; of a theoretical
component, and their corresponding probabilities,
p(xi} and p(xj), x;>x; if and only if p(x;)> p(x;).

Concluding that there exists a main effect in terms
of probability would be equivalent to the statement
that p(x;) > p(xj). Therefore, whenever a monotonic
relationship exists between x and p(x), a main effect
in terms of probability would imply a main effect in
terms of depth of processing, since probability is
assumed to be monotonically related to depth of
processing.

The rest of the classes of components discussed in
this paper all involve monotonic functions.”® Tt will
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therefore be assumed that main effects obtained with
probability are always interpretable.

Conclusions Based on Interactions

The bottom panels of Figure 3 illustrate what sorts
of interactions are interpretable and what sorts of
interactions are not interpretable when monotonicity
is the only assumption made about the mapping
function. Note that the data patterns are arranged in
seven pairs: The two members of each pair represent
the same outcome but with the abscissa and curve
parameters reversed (i.e., the top member of each pair
plots Factor A on the abscissa with Factor B as the
curve parameter, whereas the reverse is true for the
bottom member of each pair).

Any interaction that is a crossover interaction is
interpretable in the context of a monotonic function
(Figure 3b). A crossover interaction (also referred to
as ordinal nonindependence), of course, exists when
the ordering of the data points corresponding to the
levels of one independent variable depends on the level
of the other independent variable (cf. Krantz, Luce,
Suppes, & Tversky, 1971; Krantz & Tversky, 1971).
Graphically, a crossover interaction exists when the two
curves touch each other when either of the two
independent variables is plotted on the abscissa. Lack
of an interaction is uninterpretable when both
independent variables show a main effect; however,
when one or both of the independent variables fail
to show a main effect, this lack of interaction is
uninterpretable. Any interaction that is not a crossover
interaction is not interpretable (Figure 3c).

POTENTIALLY QUANTIFIABLE FUNCTIONS

The remainder of the classes of theoretical com-
ponents are assumed to have the capability of being
quantitatively related to response probability. Each
such class breaks into two subclasses. In the first
subclass, the exact function and its parameters are
assumed to be specified; that is, given any probability,
p(x), the numerical value of the corresponding x may
be determined. For this subclass, the arguments made
in this paper are superfluous, because the probability
that is initially measured in an experiment can be
transformed into, and analyses can be performed
directly on the state of the component of interest.
This is done, for exarple, when response (hit and false
alarm) probabilities measured in a recognition memory
experiment are transformed into d’ scores.

The second subclass of components involves instances
in which the general form of the function is known,
or intuited (e.g., the function is negatively accelerated),
but for one reason or another, the exact form and/or
the parameters of the function are not determined
(e.g., it is not known whether the function is logarithmic
or exponential). When the theoretical component
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Figure 4. Ogival functions are no better than monotonic
functions in terms of interpreting interactions.

being tested falls into the second subclass, response
probabilities are the only data generally presented
in a research report, and the arguments presented in
this paper do apply.

Ogival Functions

Many variables in the world are assumed to be
normally distributed. With an underlying normal
distribution, a theoretical component of interest is
often measured by a zscore or by something closely
akin to a zscore. The measure d' from the theory
of signal detection is an example of such a theoretical
component. Figure 4a, which assumes a yes-no
recognition memory experiment and the standard
assumptions of signal-detection theory, depicts the
function mapping d' into probability correct for two
criterion values.

In terms of interpreting interactions, one is in no
better shape with an ogival function than with a
function that is merely assumed to be monotonic.
Parts of the ogival function are negatively accelerated,
whereas other parts are positively accelerated. This
again means that only crossover interactions are
interpretable.

Negatively Accelerated Functions

A second class of functions that map some theoretical
component into response probability is the class of
negatively accelerated functions. For example, as shown
in Figure Sa, Atkinson and Shiffrin (1968) assume long-
term memory strength of an item to be exponentially
related to the number of trials that the item spent in
the rehearsal buffer. When such a function obtains,
most types of interactions are interpretable, as depicted
in Figure 5b. In addition to the crossover interactions,
any interaction involving curves that diverge toward
higher values of response probability or any lack of
interaction must similarly result in a diverging

interaction when transformed to the theoretical
component. The only type that is not interpretable
is shown in Figure Sc. Such an interaction occurs when
the curves converge toward higher levels of response
probability. An example demonstrating why this type
of interaction is uninterpretable within the context
of a negatively accelerated mapping function has been
presented earlier in this paper.

Inverse Functions

When the time to perform some operation is the
theoretical component of interest, an inverse function
of one sort or another often maps time into response
probability. That is, the longer the time it takes to
carry out some process, the lower is the probability
of successfully accomplishing whatever the task at
hand. An example of such a situation is drawn from an
experiment reported by Sperling, Budiansky, Spivak,
and Johnson (1971). In this experiment, a series of
letter arrays was presented to a subject in rapid
succession. Embedded somewhere in one of the
arrays was a digit, and the dependent variable in the
experiment was the probability of correctly reporting
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the digit’s location. Sperling et al. assumed that if the
subject had scanned the location of the digit, he would
respond correctly; otherwise, he would guess and be
correct with some guessing probability g.

Designating 1 as the length of time each array is
shown and n as the number of symbols per array, the
function relating response probability to the time to
scan a location is shown in Figure 6a. Because it is
positively decelerated, this sort of function represents,
in a sense, the converse of the negatively accelerated
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function shown in Figure 5a. Any interaction involving
curves that converge toward higher levels of probability
or any lack of interaction must result in a similar
converging interaction in terms of the theoretical
component. The only uninterpretable interactions
are ones involving curves that diverge toward higher
levels of probability.”

Linear Functions

The final class of functions to be considered in
this paper is the class of functions that linearly relate
some theoretical component of interest to response
probability. An example of such a situation may be
drawn from the Sperling etal. (1971) experiment
described in the previous section. Suppose that in this
paradigm, the theoretical component of interest is the
number of locations scanned per array (as opposed
to the time to scan a single location). The function
relating number of scanned locations to response
probability is linear, as shown in Figure 7a. For this
class of theoretical components, all interactions in terms
of response probability are interpretable.’

INTERACTIONS IN DESIGNS INVOLVING
MORE THAN TWO LEVELS OF AN
INDEPENDENT VARIABLE

As noted above, 2by 2 designs have been used
as examples in this paper because they are the simplest
for illustrating the paper’s basic point. However, the
same general arguments made above obtain for designs
involving more than two levels of each independent
variable. Suppose, for example, that the design in the
top panel of Figure 1 had included two other values,
10 and 15sec, of the retention interval factor, and
suppose that the same diverging curves had emerged.
The same conclusion, that forgetting is faster for
Condition A, than for Condition A;, might easily be
made. And this conclusion would be an invalid one
by the same reasoning that applied to the 2 by 2 design.

Conjoint Measurement
The general topic of nonlinear scale transformations
is a crucial one in the conjoint measurement literature

Table 1
Examples of Hypothetical Data Stemming from 3 by 3 Designs
Example 1 Example 2
Factor 1 Factor 2
Factor 2 a b c Factor 2 a b c

. ra b Ic 15 =.70 > gqc = .65 . ra b Ic 1 =.70 > qc = .65

.50 .70 .90 qa=.45>pb=.35 .50 .70 .90 qa=.45>pb=.35

qa qb qc and ga qb qc but
1 45 50 65 ra = .50 > pc = .40 q A5 50 65 ra = .50 < pc = .55

pa pb pc Double cancellation pa pb pc Double cancellation
P .10 35 40 is satisfied. P .10 35 55 is not satisfied.

Note—In both examples, ordinal independence is satisfied. However, double cancellation is satisfied only in Example 1.
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(e.g., Krantz etal, 1971; Krantz & Tversky, 1971).
One of the major goals of the conjoint measurement
technique is to enumerate necessary and sufficient
conditions for the existence of transformations that
will remove interactions. Consider a set of data arising
from a multifactor design. The question may be raised,
do there exist monotonic transformations on the
independent and dependent variables that will remove
any existing interaction in the data? For any 2byn
design (n=2), lack of ordinal independence in the
data is, as noted in the above arguments, sufficient
to reject the existence of such transformations.
However, for designs involving three or more levels
of both independent variables, a second characteristic
of the data is also sufficient to reject the existence
of such transformations. This characteristic involves
any failure of what is referred to as double cancellation.
A thorough discussion of double cancellation is beyond
the scope of this paper; however, for completeness,
the description provided by Krantz and Tversky (1971)
is briefly recapitulated below. Krantz and Tversky
as well as Krantz etal. (1971) provide excellent and
much more complete coverage on the topic.

Consider the 3by3 design depicted in Table I.
The notation is similar to that used by Krantz and
Tversky (1971): The three levels of Factor 1 are labeled
a, b, and c; and similarly, the three levels of Factor 2
are labeled p, q, and r. Accordingly, the nine cells are
labeled ap, aq, and so on.

Now consider the relationships of Cell b to qc
and of Cell-qa to pb. Satisfaction of double cancellation
may be stated as follows: If :

b 2 qc m
and

qa = pb, @
then

ra=pc.

The term “double cancellation” stems from the fact
that the bs on the left-hand side of Inequation 1 and on
the right-hand side of Inequation 2 may be “cancelled,”
as may the gs on the right-hand side of Inequation 1 and
on the left-hand side of Inequation 2. Such cancelling
leaves the resulting ra on the left side and pc on the right
side of the inequation.

Finally, consider the difference between the two
examples depicted in Table 1. In both of these examples,
ordinal independence is satisfied (i.e., the ordering
of the dependent variable is the same for each row
and is the same for each column). In Example 1, double
cancellation is also satisfied. Thus, the interaction
existing in these data could be transformed away.
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Figure 7. All interactions are interpretable when a linear
function is assumed to map some theoretical component into
response probability.

However, double cancellation fails in Example 2.
This means that the interaction is a “true” one: No

‘monotonic transformation exists that will remove it.

It should be noted that with designs involving more
than three levels of either of the independent variables,
there is more than one test of double cancellation.
In general, in an M by N design (M and N both 2 3)
there are (M)X (§) tests of double cancellation. If
any of these tests fails, then the existing interaction
may not be transformed away.

CONCLUSIONS

The arguments made in this paper are not, of course,
new. Psychologists are generally familiar with the fact
that some interactions can be made to appear and
disappear at will by performing a nonlinear transform-
ation on the data. The crucial point, however, is that a
dependent variable such as response probability is not
intrinsically interesting. Rather, it is only interesting
because of what it reflects about a component of some
theory. Getting from the dependent variable back to
the theoretical component may well involve a
transformation on the dependent variable. If this
transformation is nonlinear, then one is limited in fairly
specifiable ways when interpreting data involving the
original dependent variable.
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NOTES

1. Both time and probability can, of course, be broken into
subcategories. “Time” would include, for example, reaction
time to a tachistoscopic presentation, time to do a long sorting
task, duration of an eye fixation, and so on. Likewise,
“probability” would include probability of recalling an item,
probability of choosing one item as opposed to another,
probability of choosing a given confidence rating, and so on.
The dependent variable, “number of items,” is a disguised form
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of probability, since it is simply probability multiplied by a
constant.

2.In some experiments, however, time as a dependent
variable is assumed to reflect something other than time as
a theoretical component. For example, reaction time is
sometimes used as a measure of memory strength. These
cxperiments are subject to some criticisms (presented below)
of experiments that use probability as a dependent variable.

3. The Brown-Peterson paradigm was chosen arbitrarily.
The example could have been made within the context of any
of a number of memory paradigms.

4. This definition ignores problems having to do with error
variance in the data. Sample means, obtained from the data,
may form an interpretable interaction, whereas the population
means being estimated may form an uninterpretable interaction
or vice versa, This, of course, dictates additional caution in
data interpretation.

5. The to-be-presented arguments actually apply only to
“strictly monotonic” functions. For ease of discourse, the
less cumbersome term *“‘monotonic” will be used.

6. This is not, of course, to say that all functions relating
a theoretical component to some measure of probability are
monotonic. For instance, in yes-no recognition experiments,
criterion value (8) is nonmonotonically related to probability
correct.

7. Actually, neither inverse nor linear functions are strictly
monotonic, since they run into an abrupt ceiling at p(x) = 1.0
and/or an abrupt floor at p(x) = 0.0. Ceiling and floor effects
will not be dealt with extensively in this paper; suffice it to say
that the arguments assume that, in an experiment, none of the
probabilities being estimated is 1.0 or 0.0. The arguments could,
however, be extended to cover the more general case that does
not depend on this assumption.
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